科研笔记(七) 基于路径规划和WiFi指纹定位的多目的地室内导航

Hello,everyone!
我是CS科研GO,一个热衷于科研和软开的胖子!
论文题目:Multi-destination Indoor Navigation using Path Planning and WiFi Fingerprint Localization
论文作者:Orachat Chitsobhuk, Kulwarun Warunsin, Sornchai Udomthanapong;
工作单位:KMITL,Ramkhamhaeng Unversity,Burapha University;
发表会议:International Conference on Computer and Communication Systems 2018。

1. Abstract

本文提出了一种基于路径规划和WiFi指纹定位的多目的地室内导航系统。此系统允许用户指定多个目的地,并且可以随时改变路线。路径规划将使用2-opt和A *算法自动更新路径。修改后的路线将根据WiFi指纹定位提供的用户当前位置进行分析。系统采用朴素贝叶斯分类以从存储在数据库中的RSS指纹先验中学习。 通过大量实验的性能评估结果表明,在结合概率先验条件的基础上,性能得到了显着提高,并且具有更高的噪声承受能力。 综上,此系统支持根据定位实现自动路径更新和导航优化,从而为用户提供室内导航服务。

2. Introduction

随着移动设备和移动通信技术的广泛应用,对导航系统的要求越来越高。导航系统的关键任务是定位和路径规划。在室外环境中,全球定位系统由于能够提供可靠的定位,因此得到了广泛的应用。然而,它的服务在室内环境非常有限。室内定位服务(IPS)是近年来一个具有挑战性的问题。现有的室内定位系统基于多种技术,如RFID、蓝牙、Zig bee、WiFi。在这些技术中,WiFi IPS是最具吸引力的研究之一,其原因在于在室内环境中通常有大量的WiFi接入点,且移动设备内置的WiFi接收模块的便利性。

WiFi IPS利用环境中已有的信息,而无需对室内环境进行任何其他更改。WiFi IPS大多采用包含信号特性或特征的WiFi指纹,尤其是基于接收信号强度(RSS)的指纹。即使信号强度会受到信号反射,散射和衍射的影响而受到多路径衰落和阴影的影响,但每个位置的指纹都是不同的,并且可以作为定位的良好来源。此系统包括两个阶段:训练和定位。在训练阶段,通过收集从选定区域中每个参考点附近的AP获得的RSS向量来构建指纹图。在定位阶段,确定目标位置是一项任务。该问题可以看作是多类分类。可以使用几种技术来识别所需的位置,例如k最近邻(KNN),加权k最近邻(WKNN),统计高斯混合模型,朴素贝叶斯分类器和支持向量机(SVM)。

路径规划在导航服务中也很重要,它负责提供到达所有目的地的路线。 Dijkstra的算法和A* 算法通常用于最短路径查找。 Dijkstra的算法保证找到一条从起点到目标的最短路径,只要没有一条边的成本为负。A* 算法是Dijkstra算法的一种修改,该算法能在启发式不高估距离的情况下找到最优路径。 由于它易于实现且效率很高,因此深受青睐。在路径规划过程中,用户可能会突然改变计划,绕行路线,甚至寻找多个目的地。 因此,高效的导航系统必须能够提供合适的替代路线。

本文提出的系统使用2-opt和A*算法与WiFi指纹定位,允许自动更新路径的多目的地导航。它将路径规划和定位相结合,以提供精确的预测和精确的导航解决方案。允许用户指定多个目的地,并可以在任何时候绕行路线。WiFi IPS提供位置坐标,显示用户的位置。在根据路线规划方法,将所有目标组织成最短路径。当用户的位置超出预定的规划路线时,将被重新激活,用于路线更新和导航优化。

3. The proposed algorithm

3.1 多目的地室内导航系统

系统架构由3个主要组件组成:室内定位服务(IPS)、多目的地路径规划和路径更新,如图1所示。首先,用户向服务器输入由多个目的地组成的路径轮廓。然后,服务器执行多目的地路径规划,根据用户的要求搜索包含所有目的地的路由,并将结果发送到用户的移动设备。在参观过程中,便携式设备持续感知WiFi信号并从IPS中获取用户的位置。每当系统检测到用户偏离预定的路由时,便携式设备就会自动向服务器报告请求新的路由。然后服务器执行路由更新,并为用户提供更新后的新路由。所述多目的地室内导航系统流程图如图3所示。
在这里插入图片描述

3.2 WiFi IPS定位

室内定位服务是基于WiFi RSS指纹估计用户当前位置的模块,分析给定位置的无线电信号与对应位置的无线电信号之间的关系。每个指纹都具有每个AP的RSS信息,并且与地图中的所有指纹相比,来自给定位置的指纹具有唯一的组合。这个问题可以看作是多类分类。

目前的解决方案分为两类:确定性算法和概率算法。在确定性算法中,一般认为数据库中测量点与被测位置向量之间统计信号距离最小的RSS指纹是最佳的位置估计。以欧氏距离或曼哈顿距离的统计距离计算为例,讨论了最近邻技术。在概率算法中,基于参考数据库中的先验条件概率分布,利用概率推理来确定给定位置发生的可能性。这类方法的例子包括那些使用贝叶斯概率推论的方法。

本文选用朴素贝叶斯分类器,作为基于概率的指纹分类。它是贝叶斯网络分类器的最简单形式,是一种基于随机模型假设特征独立的监督学习算法。尽管它很简单,但它对RSS的时间变化不敏感,易于构建,无需迭代参数估计,适用于大型数据集,并且优于更复杂的分类器。WiFi指纹定位过程分为两个阶段:训练阶段和定位阶段。训练阶段建立指纹数据库和每个位置的后验条件概率表,定位阶段提供匹配位置,如图2所示。
在这里插入图片描述
在训练阶段,在监测区域上定义了虚拟网格。 网格大小取决于设计的定位精度。 将每个采样点的RSS指纹插入到具有网格坐标和对应于N个接入点(AP)的RSS列表的RSS指纹数据库中,如下所示

在这里插入图片描述
式中,f(j)为第j个RSS采样指纹,RSS-i为该位置第i个AP接收到的信号强度。然后使用朴素贝叶斯分类器学习这些RSS指纹。类节点k表示位置,特征节点RSS对应每个AP接收到的信号强度。其基本思想是利用贝叶斯概率术语计算第k个位置的后验概率,公式可以描述为
在这里插入图片描述
其中,P(k/RSS)为给定RSS预测因子(feature)下目标类的后验概率,P(k)为给定RSS预测因子(feature)下目标类的先验概率,P(RSS)为给定RSS预测因子(feature)下目标类的似然概率,P(RSS)为RSS特征的先验概率。在实现过程中,构造了一个频率表,并将其转换为条件似然表。
在定位阶段,测量目标的WiFi指纹。通过计算贝叶斯方程得到RSS预测器的后验概率。利用最大后验(MAP)进行了位置预测。概率最大的位置被认为是最有可能的位置。

在这里插入图片描述

3.3 多目的地路径规划

多目的地路径规划是明确所有目的地并为导航创建最短路径的模块。它类似于旅行推销员问题(TSP),可以看作是一个图,其中位置是节点,而边(或弧)表示节点之间的直接路径。每条边的权值是节点之间的距离。本文采用基于2-opt局部最优化和A*的启发式搜索。

首先,系统对所有用户指定的目的地构造一个初始路径。然后使用2-opt算法对路线进行优化,基本上除去路线中的两条边,并将创建的两条路径重新连接起来。

利用A搜索算法建立两点之间的所有可行路径,并选择最短路径。A优先选择那些看起来更接近目标的道路。如果可能的话,它通过实现启发式函数来避免更高的成本。如果启发式不高估从某一点到目标的距离,A*总是会找到最优路径,如果存在的话。运行时间通常会更快。

3.4 室内导航地图管理

导航系统介绍有关如何到达所有用户定义的目的地的方式。使用地图管理模块在用户的便携式设备上说明了多目的地路径规划,导航路径和更新。图3示出了多目的地室内导航的流程图。初始路线是根据用户定义目的地创建的。 路径规划完成后,会将导航路线提交给地图管理模块,以在用户的UI上显示所选路线。将根据导航地图指导用户,并从WiFi IPS持续跟踪用户的位置。只要用户在预定路线内移动,就不会在地图上进行任何更改。但是,如果用户突然更改或绕道而行,则将激活地图管理,并将对更新后的路线的请求发送到路径规划模块。路径规划算法将针对新的目的地进行精确导航。
在这里插入图片描述

4. Experiment and Data Anaylysis

作者在King Mongkut’s Institute of Technology Ladkrabang(约880平方米)的ECC大楼五楼进行实验。平面图如图4所示。这是一幢9层的建筑物,上面覆盖着多个无线AP。 这些AP的所有物理位置和传输范围的信息未知。整个楼层被建模为1.5米和3.5米的正方形网格空间,分别具有115和50个参考位置。 每天上午10:00,下午1:00和3:00进行采样,为期三天。
在这里插入图片描述
为了进行性能比较,研究了两种RSS指纹定位算法:KNN算法和Naive Bayes算法。表I为误差参数平均值、标准差、最大误差的性能比较,图5为两种网格模型下KNN和Naive Bayes的累积分布函数CDF。
在这里插入图片描述
在这里插入图片描述
可以看出,朴素贝叶斯算法优于k最近邻算法。较大的误差主要发生在电梯附近的目标位置。像KNN算法那样的概率统计,将很难处理这种位置推测。KNN算法和Naive Bayes算法在3 m内的精度分别约为31%和79%。可以得出结论,先验统计可以极大地改善室内定位并具有更高的噪声容忍度。

在这个实验中,作者使用2-opt优化和A搜索的组合来检验多目标路径规划的性能。然后,路径规划进行最优搜索,并报告所选择的导航路径和搜索时间。图6展示了路径规划的性能,以找到最优路径通过随机3-10个目标目的地。每种情况都要测试10次。箱线图的目的是说明使用所提出的2-opt和A搜索算法进行寻路时的时间分布。8、9、10个目标节点的平均路由时间分别为717.2、848.2、851.1 ms。因此,当选择更多的目标目的地时,效率就会更高。
在这里插入图片描述

5. Conclusion

本文提出了一种基于WiFi RSS指纹定位,结合2-opt和a *算法的室内导航系统。它集成了路径规划和定位,即使用户突然偏离建议的路径,也能灵活地引导用户到达多个目的地。该系统提供自动生成最佳导航路径和更新修改后的路径,每当用户移动超出范围限制。实践证明,该系统能够满足用户对室内导航服务的需求,提高用户的室内体验,从而缩短用户寻找目的地所需的时间。

内容靠得住,关注不迷路。
在这里插入图片描述

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 技术工厂 设计师:CSDN官方博客 返回首页